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概要
遠アーベル幾何学において, Kummer 忠実体は基礎体に適していることが期待されている.

近年, 小関–田口は Kummer 忠実体を Galois 表現的に特徴付けることを目的として (準) 高次
Kummer 忠実体を定義したとともに, 劣 p 進体は準高次 Kummer 忠実か? という自然な問題
を提唱した. 筆者はこの問題を肯定的に解決した. さらに, 標数が 0 の高次元局所体の準高次
Kummer 忠実性について考察した. 本稿では, それらの過程で得られたいくつかの結果を紹介
する.

導入
KF (resp. HKF, resp. QHKF, resp. HLF) は Kummer 忠実 (resp. 高次 Kummer 忠実, resp.

準高次 Kummer忠実, resp. 高次元局所体)を表すものとする. ここで, KF, HKF, QHKFは体に関
する性質である.

遠アーベル幾何学は, 適切な代数多様体のエタール基本群から元の多様体の幾何構造および代数構
造までを復元できるであろう, という Grothendieck予想により始まった. 当初, 多様体の基礎体とし
ては有理数体上の有限生成体が適していると思われてきたが, 1次元の場合の Grothendieck 予想の
解決に伴い, 基礎体を劣 p進体 (cf. §0)とする p進的な解釈が望月によりなされた. さらに, 近年で
は, KF体 (cf. [5, Definition 1.5]) という Kummer理論が遠アーベル幾何における復元について有
効に働くような体を基礎体とする理論へと拡張されつつある. とくに, 劣 p進体は KFであることに
注意する (cf. [5, Remark 1.5.4]). 実際に, 星によって, KF体上のアフィン双曲的代数曲線に対する
Grothendieck予想が証明されている (cf. [2]). 現在では, KF体は遠アーベル幾何における基礎体と
して適していることが期待されている. これにより, Grothendieckの想定より遥かに多くの体が基礎
体として適していることがわかってきた. しかし, 劣 p進体でない KF体を見つけることは必ずしも
容易ではない. 近年, 無限次代数体における KF性の判定条件を与えることができる体として小関–田
口により, HKF体および QHKF体が定義された (cf. [8], 定義 1.1). これらの体は KF体の variant

であり, KF性を Galois表現的に特徴づけようとする試みで導入されたと思われ, 数論において有用
なものと考えられている. その一例として, HKF 体の分岐理論的特徴付けが挙げられる. 例えば, k

を代数体とするとき, 分岐が至るところで有限であるような kのGalois拡大体は HKFになることが
知られている. この応用として, k 上の半 abel多様体 B と正の整数 nを固定し, 素数 pに対して, B
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の pn 等分点の座標を全て添加して得られる拡大体は HKFであることがわかる. また, 代数体 k 上
の Galois拡大 K について, K に含まれる k の任意の有限次拡大 k′ に対して K における k′ 上の最
大 abel部分拡大の分岐指数が有限ならば, K は HKFであることがわかっている. さらに, HKF体,

QHKF体, KF体, 劣 p進体の 4つの概念の間の関係もある程度明らかになっている. しかし, 一般
に, 劣 p進体は HKFにはならない. したがって, 劣 p進体が QHKFになるか? という自然な問題が
生じた. この問題は [8]において提唱されたものである. 筆者はこの問題を肯定的に解決した.

さらに, 筆者は KF性と QHKF性がどの程度類似しているか, ということに関心がある. 近年, 室
谷によって, HLF (cf. 定義 3.1)に対する KF性の判定がなされた (cf. [7], 定理 3.3). これにより, 剰
余体の標数が正の HLFは KFであり, 剰余体の標数が 0の HLFは KFになり得ないことが明らか
になった. 筆者はこの性質の QHKF体における類似について考察した. 具体的には, 標数 0の HLF

が QHKFになりうるいくつかの “証拠”を提示する. 本稿では, 上記の考察の過程で得られたいくつ
かの結果を紹介する.

次に, 本稿で用いる略記および, 体とその性質の関係について記述する.

略記:

• “PLF”は “positive-characteristic local field” (cf. §0),

• “MLF”は “mixed-characteristic local field” (cf. §0),

• “HLF”は “higher local field”(cf. 定義 3.1),

• “PHLF”は “positive-characteristic higher local field” (cf. 定理 3.2),

• “MHLF”は “mixed-characteristic higher local field” (cf. 定理 3.2),

• “PFHLF”は “positive-first-residue-characteristic higher local field” (cf. 定理 3.2),

• “ZFHLF”は “zero-first-residue-characteristic higher local field” (cf. 定理 3.2),

• “CDVF”は “complete discrete valuation field”,

• “KF”は “Kummer-faithful” (cf. [5, Definition 1.5]),

• “QHKF”は “quasi-highly Kummer-faithful” (cf. 定義 1.1),

• “HKF”は “highly Kummer-faithful” (cf. 定義 1.1)

の略記である.

まとめ:

体とその性質の関係についてまとめておく. k を体とする. (＊)は k が＊であることを表す. この
とき, k に対して, 次の図式のような体とその性質の関係がある (cf. §0, 1, 2, 3):

(PLF) (PHLF) (PFHLF) (HLF) (CDVF)

(MLF) (MHLF) (ZFHLF)



(劣 p進体) (KF) (MHLF)

(HKF) (QHKF) (ZFHLF)

[5]

定理 2.5

[7]

? (cf. 命題 3.4)

自明

[8] (⋆)

? (cf. 命題 3.4)

ただし, (⋆)では, k はある標数 0の KF体上の Galois拡大となることを仮定する.

0 記号と用語
記法:

体 k に対して,

• 絶対 Galois群を Gk,

• 代数閉包を k,

• perfectionを kperf ,

• 標数を char k,

• k 上の有理関数体を k(t),

• k(t)の t進完備化を k((t)),

• k 上のスキーム X に対して, ベースチェンジ X ×Spec k Spec k を Xk,

• k が CDVFのとき, その剰余体を k,

• k が完全かつ標数が正のとき, Witt環をW (k)

とかく.

体:

素数 pと正の整数 nに対して,

• Qは有理数体,

• Qp は Qの p進完備化,

• Fpn は位数 pn の有限体

を表す. ある素数 pが存在して, Qp (resp. Fp((t))) の有限次拡大体と同型な体をMLF (resp. PLF)

という. Qp 上の有限生成体の部分体と同型な体のことを劣 p進体という. Qp(r)は Qp の Tateひね
りを表す.

代数多様体:

代数多様体は,体上の分離的かつ幾何的整な有限型スキームとする.

G加群:

群 Gがベクトル空間 V に作用しているとき, V G (resp. VG)は V の Gによる不変部分 (resp. 余
不変部分)を表す.



エタールコホモロジー:

体 k上の有限型スキームX と素数 ℓ ̸= char kに対して, Hi(Xk,Qℓ)を ℓ進エタールコホモロジー
とする. さらに, kが剰余体を持つならば (e.g. kが CDVF), ℓ進エタールコホモロジーは ℓ ̸= char k

を仮定していることに注意する. ℓ = char k のときは, p進エタールコホモロジーという. Gk の元が
定める Xk の自己同型の引き戻しによって, ℓ進と p進エタールコホモロジーに Gk が作用する.

1 HKF体と QHKF体の定義と性質
定義 1.1 ([8, Definition 2.6]). k を体とし, pk

def
= char k とおく. このとき, k に対して, 次の条件を

考える:

(†)i,r 任意の k の有限次拡大 kH , 任意の kH 上の固有かつ滑らかな多様体 X, ℓ ̸= pk をみたす任意
の素数 ℓに対して, Hi(Xk,Qℓ(r))H = 0が成り立つ. ただし, H

def
= GkH

とする.

(i) 任意の 0 < i ≤ 2 dimX に対して, 条件 (†)i,0 をみたすとき, k が pre-QHKFであるという.

(ii) i ̸= r をみたす任意の i, r に対して, 条件 (†)i,r をみたすとき, k が pre-HKFであるという.

(iii) k が完全かつ pre-QHKFであるとき, k がQHKFであるという.

(iv) k が完全かつ pre-HKFであるとき, k がHKFであるという.

Poincaré双対より,

(Hi(Xk,Qℓ(r))H)∨ ∼= (Hi(Xk,Qℓ(r))
∨)H ∼= H2d−i(Xk,Qℓ(d− r))H

が成り立つことに注意する. ただし, (-)∨ は双対を表し, d
def
= dimX とおいた. 定義から, 直ちに次

の性質が従う:

• HKFならば QHKFである.

• HKF (resp. QHKF)体の完全な部分体は HKF (resp. QHKF)である.

• HKF (resp. QHKF)体の有限次拡大体も HKF (resp. QHKF)である.

HKF体と QHKF 体は KF体の variant として定義された. [5] と [8]において, KF 体, HKF 体,

QHKF 体, 劣 p 進体の 4 つの概念の関係がある程度明らかになっている. 具体的には, [5] では劣 p

進体が KFであることが示され, [8]では標数 0の KF体上の Galois拡大体に対しては QHKFなら
ば KFであることが示されている. さらに, MLFは HKFになり得ないこともわかっている. よって,

劣 p進体は QHKFか? という問題は自然であるが, これは [8]において提唱された. この問題を解決
するにあたり, 筆者はまず次の補題を証明した:

補題 1.2. K を体 k 上の有限生成体, X を K 上の固有かつ滑らかな多様体, ℓ ̸= char k を素数とす
る. このとき, k が条件 (†)i,r をみたすならば,

Hi(XK ,Qℓ(r))GK
= 0

が成り立つ.



注意 1.3. この補題より, 以降に記述する体 k 上の ℓ進エタールコホモロジーと p進エタールコホモ
ロジーの不変部分と余不変部分の消滅に関する主張は, 全て k 上の有限生成体の部分体に対して成り
立つ.

絶対 Galois群は体の perfectionをとっても変わらないことから, HKF性と QHKF性に関する次
の性質を導くことができる:

命題 1.4. HKF (resp. QHKF)上の有限生成体の perfectionは HKF (resp. QHKF)である.

この命題より, 劣 p進体が QHKFであることを証明するにはMLFが QHKFであることを示せば
十分であることがわかる.

2 MLFの QHKF性
Jannsenはウェイト・モノドロミー予想と p進ウェイト・モノドロミー予想が成り立つことを仮定
すると, MLF上の ℓ進エタールコホモロジーの惰性群による不変部分の重さや p進エタールコホモ
ロジーの絶対 Galois群による不変部分の計算を精密に行うことができることを [4]において示した.

これら 2つの予想が成り立つと仮定すると, Jannsenによる計算結果, [4, Corollary 4.3, 5.2]を使う
ことにより, MLFが QHKFであるという主張は成り立つことがわかっている (cf. [8, Proposition

2.11]). この節では, 2つの予想の成立を仮定せずともMLFの QHKF性が導けることを紹介する.

以下, この節では k をMLFまたは PLFとする. このとき,

• pを k の剰余体の標数,

• Ik を k の惰性群,

• ℓを pと異なる素数

とする. さらに, X を k 上の固有かつ滑らかな多様体とし, dを X の次元とする.

実は, PLF の場合のウェイト・モノドロミー予想は伊藤によって解決されている (cf. [3]) ため,

PLFは pre-QHKFである. 混標数の場合では, 低次元の場合や適切な仮定のもとで, ウェイト・モノ
ドロミー予想は正しいことが知られているが, 一般には未解決である. よって, 混標数の場合を考える
ことが本質的である.

以下, ウェイト・モノドロミー予想と p進ウェイト・モノドロミー予想の成立は仮定しない. この
場合のエタールコホモロジーの不変部分の計算について, Jannsenによる 2つの結果を紹介する:

定理 2.1 ([4, Theorem 4.2]). 次の主張が成り立つ:

(i) Hi(Xk,Qℓ)
Ik は混な Gk 表現であり, その重さは [max(0, 2i − 2d),min(2i, 2d + 2)] に含ま

れる.

(ii) Hi(Xk,Qℓ)Ik は混なGk 表現であり, その重さは [max(−2, 2i−2d),min(2i, 2d)] に含まれる.

したがって, r /∈ [max(0, i− d),min(i, d+ 1)]に対して, Hi(Xk,Qℓ(r))
Gk = 0が成り立つ.

以下, この節では k をMLFとする.



定理 2.2 ([4, Theorem 5.3]). r /∈ [max(0, i− d),min(i, d)]に対して,

Hi(Xk,Qp(r))
Gk = 0

が成り立つ.

上記の計算結果では MLF 上のエタールコホモロジーの余不変部分の消滅を導くことはできない.

まず, 筆者は Rapoport–Zinkのウェイト・スペクトル系列 (cf. [9])を用いることにより, 定理 2.1の
主張を強めた (混標数の場合だけ考えればよいことに注意する):

定理 2.3. 次の主張が成り立つ:

(i) Hi(Xk,Qℓ)
Ik は混な Gk 表現であり, その重さは{

[max(0, 2i− 2d), max(0,min(2i− 1, 2d− 1))] if i ̸= 2d,

{2d} if i = 2d,

に含まれる.

(ii) Hi(Xk,Qℓ)Ik は混な Gk 表現であり, その重さは{
{0} if i = 0,

[min(2d,max(1, 2i− 2d+ 1)), min(2i, 2d)] if i ̸= 0,

に含まれる.

したがって, i ̸= 2dと r /∈
[
max(0, i− d), 1

2 max(0,min(2i− 1, 2d− 1))
]に対して,

Hi(Xk,Qℓ(r))
Gk = 0

が成り立つ. とくに, i ̸= 0に対して, Hi(Xk,Qℓ)Gk
= 0 が成り立つ.

p進の場合については, Mokraneの p進ウェイト・スペクトル系列 (cf. [6])を用いて, logクリス
タリンコホモロジーの重さについて調べることにより, 定理 2.2の主張を強めた:

定理 2.4. i ̸= 2dと r /∈
[
max(0, i− d), 1

2 max(0,min(2i− 1, 2d− 1))
]に対して,

Hi(Xk,Qp(r))
Gk = 0

が成り立つ. とくに, i ̸= 0に対して, Hi(Xk,Qp)Gk
= 0 が成り立つ.

以上の筆者の結果 (命題 1.4, 定理 2.3, 2.4)より, 次の結論を得る:

定理 2.5. 劣 p進体は QHKFである.

3 HLFに対する QHKF性
劣 p進体が QHKFであることにより, QHKF体のクラスは KF体のクラスとある程度近い関係に

あることがわかる. よって, QHKF性と KF性はどの程度類似しているか, ということに関心がある.



近年, 室谷により, HLFに対する KF性が研究され, その判定がなされた (cf. [7]). この節では, その
QHKF版の類似として HKFに対する QHKF性について考察した結果を紹介する.

定義 3.1 (cf. [1, §1.1]). 体の列K = Kn, Kn−1,· · · , K1, K0 が存在して, 各 0 ≤ i ≤ n− 1に対し
て, Ki+1 が CDVF, K0 が有限体, Ki = Ki+1 をみたすとき, K を n次元 HLFという. このとき,

Kn−1 (resp. K0)をK の first (resp. last) residue fieldという. さらに, ある整数 nが存在して, n

次元 HLFとなる体を HLFという.

CDVF (k, vk)に対して,

k{{T}} def
=


+∞∑

j=−∞
ajT

j

∣∣∣∣∣∣ aj ∈ k, inf vk(aj) > −∞, lim
j→+∞

vk(aj) = +∞


と定める. k{{T}}の付値 vk{{T}} は vk{{T}}(

∑
ajT

j)
def
= min vk(aj)で定める.

HLFは分類できることが知られている:

定理 3.2 (cf. [1, §1.1], 分類定理). K を n次元 HLFとし p
def
= charK とする. このとき, K は次の

いずれかと同型である:

(i) Fq((T1)) · · · ((Tn)), ただし q はK の last residue fieldの位数とする.

(ii) k{{T1}} · · · {{Tn−1}}, ただし k は Qp の有限次拡大である.

(iii) k{{T1}} · · · {{Tm}}((Tm+1)) · · · ((Tn−1)), ただし n ≥ 3, 1 ≤ m ≤ n− 2, kは Qp の有限次拡大
である.

(iv) k((T1)) · · · ((Tn−1)), ただし n ≥ 2, k は Qp の有限次拡大である.

HLF k が定理 3.2の (i) (resp. (ii), resp. (i) または (ii), resp. (iii) または (iv)) と同型であると
き, k を PHLF (resp. MHLF, resp. PFHLF, resp. ZFHLF)という. HKFに対する KF性に
ついて, 次の定理が知られている:

定理 3.3 ([7, Theorem 3.8]). PFHLF は pre-KF である. とくに, MHLF は KF である. ただし,

pre-KFとは KFの定義から完全という条件を抜いたものである.

さらに, 剰余体の標数が 0 の CDVF は KF になり得ないことも知られている (cf. [7, Remark

3.9]). とくに, ZFHLF は KF ではないことに注意する. 筆者は定理 3.3 の QHKF 版の類似を考察
し, MHLFや ZFHLFが QHKFになりうる “証拠”を提示した. すなわち, 次の命題が成り立つ:

命題 3.4. K を HLFとし, X を K 上の 1次元の固有かつ滑らかな多様体とする. このとき, i ̸= 2,

r /∈
[
max(0, i− 1), 1

2 max(0, 2i− 1)
] と任意の素数 ℓ ̸= charK (ℓ = charK の場合も含む) に対

して,
Hi(XK ,Qℓ(r))

GK = 0

が成り立つ. とくに, i ̸= 0に対して, Hi(XK ,Qℓ)GK
= 0 が成り立つ.

この命題の証明の過程で, かなり一般的な状況における p 進エタールコホモロジーの絶対 Galois



群による不変部分の消滅についての結果を得た. 次に記述する定理は [4, Theorem 5.3]や定理 2.4の
拡張である:

定理 3.5. k を CDVFとし, k は完全かつ p
def
= char k > 0とする. X を k 上の d次元の固有かつ滑

らかな多様体とする. このとき, i ̸= 2dと r /∈
[
max(0, i− d), 1

2 max(0,min(2i− 1, 2d− 1))
]に対

して,
Hi(Xk,Qp(r))

Gk = 0

が成り立つ.

この定理の “剰余体が完全である”という仮定は必ずしも必要とは限らないことに注意する (cf. 注
意 1.3). 例えば, k がMHLFのとき,

Qp{{T1}} · · · {{Tn−1}} ⊂ W (Fp((T1)) · · · ((Tn−1))
perf)[1/p]

なので, 定理の結論と同様のことが成り立つ.
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